Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.160
Filtrar
1.
Environ Sci Technol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662937

RESUMO

The polyamide (PA) nanofiltration (NF) membrane has the potential to remove endocrine-disrupting compounds (EDCs) from water and wastewater to prevent risks to both the aquatic ecosystem and human health. However, our understanding of the EDC removal-water permeance trade-off by the PA NF membrane is still limited, although the salt selectivity-water permeance trade-off has been well illustrated. This constrains the precise design of a high-performance membrane for removing EDCs. In this study, we manipulated the PA nanostructures of NF membranes by altering piperazine (PIP) monomer concentrations during the interfacial polymerization (IP) process. The upper bound coefficient for EDC selectivity-water permeance was demonstrated to be more than two magnitudes lower than that for salt selectivity-water permeance. Such variations were derived from the different membrane-solute interactions, in which the water/EDC selectivity was determined by the combined effects of steric exclusion and the hydrophobic interaction, while the electrostatic interaction and steric exclusion played crucial roles in water/salt selectivity. We further highlighted the role of the pore number and residual groups during the transport of EDC molecules across the PA membrane via molecular dynamics (MD) simulations. Fewer pores decreased the transport channels, and the existence of residual groups might cause steric hindrance and dynamic disturbance to EDC transport inside the membrane. This study elucidated the trade-off phenomenon and mechanisms between EDC selectivity and water permeance, providing a theoretical reference for the precise design of PA NF membranes for effective removal of EDCs in water reuse.

2.
Waste Manag ; 182: 175-185, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663277

RESUMO

Every year an estimated two million tonnes of waste electrical and electronic equipment (WEEE) are discarded by householders and companies in the United Kingdom (UK). While the UK has left the European Union (EU), its waste-related policies still mirror those of the EU, including the WEEE-related policies. Motivated by the recent introduction the so-called 'Right to Repair' policy for electrical and electronic equipment (EEE) across the EU and UK, this paper aims to demonstrate that, depending on the commitment and behavioural changes by the consumers and the government, the future of the WEEE management of the UK will vary. To this end, focusing on landfilled WEEE reduction we develop a generic system dynamics model and apply it to eleven WEEE categories. They depict the flow of EEE and WEEE representing the interaction among the stakeholders (e.g., consumers and producers of EEE) and relevant government regulations of the UK. Our four scenario analyses find that longer use of EEE and better WEEE collection seem to be effective in reducing landfilled WEEE, while more reuse and more recycling and recovery have negligible impacts, despite excluding the additional generation of landfilled WEEE as a result of recycling and recovery. Comparing with the business-as-usual scenario, one year longer EEE use and 10% more of WEEE collection could at maximum reduce landfilled WEEE by 14.05% of monitoring and control instruments and 93.93% of display equipment respectively. Backcasting scenario analyses reveal that significant efforts are required to reduce the targeted amounts.

3.
Risk Anal ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664225

RESUMO

A comparative assessment of the risks of the three current wastewater effluent disposal options and three other potential options was conducted for Southeast Florida communities. The question was how the risk to humans from the use of potable reuse compares to the other five available wastewater disposal alternatives. The need for this type of risk assessment is due to the potential to use potable reuse as a water supply and the potential resistance from the public as a result of such a proposal. Water quality data relevant to disposal of wastewater treatment plant effluent from South Florida utilities along with water quality data on the receiving waters and drinking water standards were obtained for the project. The comparison of the public health risks associated with these disposal alternatives indicated that health risks associated with deep wells and direct potable reuse were generally lower than those of the other alternatives.

4.
Food Chem X ; 22: 101345, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623501

RESUMO

This study investigated the effect of plasma treatment on reused water and evaluated the interactions of the plasma-treated water (PTW) with plants or microbes to determine the optimal PTW for reuse. The repeated treatment gradually accumulated nitrate (NO3-) in the PTW and lowered its pH; afterward, it led to the sprouted soybeans accumulating other inorganic ions in the PTW. The biomass of soybean sprouts was enhanced by the accumulated NO3- but decreased due to the pH effect. Meanwhile, the acidic pH reduced the microbial counts, but they increased after sprinkling the PTW over the sprouts. The optimal PTW in our study, which had a gradual increase of NO3- (≤321.8 mg·L-1) with an acceptable pH (≥pH 3), significantly enhanced the biomass by 4.2% compared to the untreated control. Additionally, it increased the total content of amino acids and isoflavones by 9% and 18% in the growing part, respectively.

5.
Antibiotics (Basel) ; 13(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38666991

RESUMO

Microorganisms carrying antimicrobial resistance genes are often found in greywater. As the reuse of greywater becomes increasingly needed, it is imperative to determine how greywater treatment impacts antimicrobial resistance genes (ARGs). Using qPCR and SmartChip™ qPCR, we characterized ARG patterns in greywater microbial communities before, during, and after treatment by a recirculating vertical flow constructed wetland. In parallel, we examined the impact of greywater-treated irrigation on soil, including the occurrence of emerging micropollutants and the taxonomic and ARG compositions of microbial communities. Most ARGs in raw greywater are removed efficiently during the winter season, while some ARGs in the effluents increase in summer. SmartChip™ qPCR revealed the presence of ARGs, such as tetracycline and beta-lactam resistance genes, in both raw and treated greywater, but most abundantly in the filter bed. It also showed that aminoglycoside and vancomycin gene abundances significantly increased after treatment. In the irrigated soil, the type of water (potable or treated greywater) had no specific impact on the total bacterial abundance (16S rRNA gene). No overlapping ARGs were found between treated greywater and greywater-irrigated soil. This study indicates ARG abundance and richness increased after treatment, possibly due to the concentration effects of the filter beds.

6.
J Environ Manage ; 358: 120890, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640760

RESUMO

Water recovery from waste water has become an essential element of the circular economy in the Baltic Sea region. However, there is little data on the possibility of using water recovered from urban waste water. A survey was conducted to learn the opinions of Poland waste water treatment plant operators. They were asked whether they recovered water for internal or external needs. Respondents indicated opportunities and barriers in this activity. The opinions of 107 operators show that work is underway on closing internal circuits in urban WWTPs. These solutions are technically relatively easy to implement and show measurable benefits (i.e., saving drinking water). However, water recovery for external purposes is rare and is at a very early stage. Despite this, the potential is significant, although many financial, organizational, technical, and mental barriers exist. The most critical challenge is the safe use of reclaimed water and the cost-effectiveness of the solutions. The survey also shows a need for education and involvement of the public.

7.
Int J Biol Macromol ; : 131205, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643922

RESUMO

A series of new kind green cellulose-supported bimetallic TiO2/Cu2O (Cell@TiO2/Cu2O) catalytic materials were obtained by in-situ reduction method employing cellulose as the carrier. The effects of metal percentage composition on the morphology and construction of the catalytic materials were systematically investigated. The Cell@TiO2/Cu2O were characterized by FT-IR, TG, XPS, SEM, TEM, EDS, and the element content was obtained by elemental analysis. Then, the achieved catalytic materials were applied to the chiral borylation reaction of α,ß-unsaturated compounds, including nitrile compounds, esters, and α,ß-unsaturated ketones. Remarkably, this approach provides an efficient strategy to gain an important class of chiral organic boron compounds with target chiral products in high yields as well as enantioselectivities. Besides, the Cell@TiO2/Cu2O could be easily recycled and effectively reused. This work constructed bimetallic TiO2/Cu2O on cellulose as a newly catalyst to obtain chiral boron compounds in aqueous phase.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38644428

RESUMO

This study presents an innovative approach for the reuse and recycling of waste material, brewer's spent grain (BSG) for creating a novel green biocatalyst. The same BSG was utilized in several consecutive steps: initially, it served as a substrate for the cultivation and production of laccase by a novel isolated fungal strain, Coriolopsis trogii 2SMKN, then, it was reused as a carrier for laccase immobilization, aiding in the process of azo dye decolorization and finally, reused as recycled BSG for the second successful laccase immobilization for six guaiacol oxidation, contributing to a zero-waste strategy. The novel fungal strain produced laccase with a maximum activity of 171.4 U/g after 6 days of solid-state fermentation using BSG as a substrate. The obtained laccase exhibited excellent performance in the decolorization of azo dyes, both as a free and immobilized, at high temperatures, without addition of harmful mediators, achieving maximum decolorization efficiencies of 99.0%, 71.2%, and 61.0% for Orange G (OG), Congo Red, and Eriochrome Black T (EBT), respectively. The immobilized laccase on BSG was successfully reused across five cycles of azo dye decolorization process. Notably, new green biocatalyst outperformed commercial laccase from Aspergillus spp. in the decolorization of OG and EBT. GC-MS and LC-MS revealed azo-dye degradation products and decomposition pathway. This analysis was complemented by antimicrobial and phytotoxicity tests, which confirmed the non-toxic nature of the degradation products, indicating the potential for safe environmental disposal.

9.
Water Res ; 255: 121458, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564892

RESUMO

Glutaraldehyde (GTH) cross-linked chitosan (CTN) biopolymer-based and polyethyleneimine (PEI) functionalized (GTHCTNPEI) aerogels were proven promising for removing mixtures of long- and short chain per- and polyfluoroalkyl substances (PFAS) in water. In this study, to further improve the performance of the aerogel for short-chain PFAS and undecafluoro-2-methyl-3-oxahexanoic acid (GenX) removal, GTHCTNPEI aerogel chunks with an average size of 13.4 mm were turned into flakes with an average size of 9.1 mm. The GTHCTNPEI flakes achieved >99 % removal of all target PFAS, including long- and short-chain PFAS and >97 % for GenX after 10 h. In addition, the flakes can be regenerated and reused for at least four cycles. When added to tap water spiked with PFAS at initial concentrations of 30, 70, or 100 ng/L, the flakes removed almost 100 % of all tested PFAS. Mechanistic investigations using density functional theory (DFT) revealed strong stabilizing hydrophobic and electrostatic interactions between the aerogels and PFAS, with GTHCTNPEI to PFAS binding energies ranging between -24.0 - -30.1 kcal/mol for PFOA; -41.3 - -48.5 kcal/mol for PFOS; and -40.5 - -47.3 kcal/mol for PFBS. These results demonstrate the great potential of the flakes for removing PFAS from drinking water, surface water, and groundwater.

10.
Int J Artif Organs ; 47(4): 229-239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622935

RESUMO

Sustainability of a product or device is currently primarily related to its environmental footprint. Here, a wider concept of sustainability is introduced for medical devices and their components in healthcare provision. Such devices sustain healthcare and patient wellbeing due to their quality specifications for material composition, product design and performance. The term quality must be intended in the most comprehensive term, including purity and biocompatibility of materials, device reliability, limited number of recalls and reduced risks as well as acceptability for patients. A close look on medical device specification shows, however, that additional parameters, such as societal, demographic and economic factors also determine medical device sustainability. The medical device life cycle, from design phase, production process to clinical application and the final disposal, also determines its impact. Recommendations for healthcare operators and managers will complete the hypothesis of this paper, that a thoroughly outlined device choice and operation together with a careful waste management of spent medical devices and their components positively affects medical device sustainability. As an example, the limited quantity of wastes and the reduced risks for adverse reaction have a positive impact on both the environmental pollution and on the costs sustained by the healthcare organisations and by the community. These factors determine both, the success of healthcare manoeuvres and the related environmental footprint.

11.
Water Sci Technol ; 89(7): 1741-1756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619900

RESUMO

Wastewater treatment plants (WWTPs) have positive and negative impacts on the environment. Therefore, life cycle impact assessment (LCIA) can provide a more holistic framework for performance evaluation than the conventional approach. This study added water footprint (WF) to LCIA and defined ϕ index for accounting for the damage ratio of carbon footprint (CF) to WF. The application of these innovations was verified by comparing the performance of 26 WWTPs. These facilities are located in four different climates in Iran, serve between 1,900 and 980,000 people, and have treatment units like activated sludge, aerated lagoon, and stabilization pond. Here, grey water footprint (GWF) calculated the ecological impacts through typical pollutants. Blue water footprint (BWF) included the productive impacts of wastewater reuse, and CF estimated CO2 emissions from WWTPs. Results showed that GWF was the leading factor. ϕ was 4-7.5% and the average WF of WWTPs was 0.6 m3/ca, which reduced 84%, to 0.1 m³/ca, through wastewater reuse. Here, wastewater treatment and reuse in larger WWTPs, particularly with activated sludge had lower cumulative impacts. Since this method takes more items than the conventional approach, it is recommended for integrated evaluation of WWTPs, mainly in areas where the water-energy nexus is a paradigm for sustainable development.


Assuntos
Águas Residuárias , Purificação da Água , Humanos , Esgotos , Eliminação de Resíduos Líquidos/métodos , Pegada de Carbono
12.
Water Sci Technol ; 89(7): 1757-1770, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619901

RESUMO

The water reuse facilities of industrial parks face the challenge of managing a growing variety of wastewater sources as their inlet water. Typically, this clustering outcome is designed by engineers with extensive expertise. This paper presents an innovative application of unsupervised learning methods to classify inlet water in Chinese water reuse stations, aiming to reduce reliance on engineer experience. The concept of 'water quality distance' was incorporated into three unsupervised learning clustering algorithms (K-means, DBSCAN, and AGNES), which were validated through six case studies. Of the six cases, three were employed to illustrate the feasibility of the unsupervised learning clustering algorithm. The results indicated that the clustering algorithm exhibited greater stability and excellence compared to both artificial clustering and ChatGPT-based clustering. The remaining three cases were utilized to showcase the reliability of the three clustering algorithms. The findings revealed that the AGNES algorithm demonstrated superior potential application ability. The average purity in six cases of K-means, DBSCAN, and AGNES were 0.947, 0.852, and 0.955, respectively.


Assuntos
Baías , Aprendizado de Máquina não Supervisionado , Reprodutibilidade dos Testes , Algoritmos , Análise por Conglomerados
14.
J Environ Manage ; 358: 120862, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652984

RESUMO

The state of Minas Gerais is one of Brazil's largest animal protein producers, and its slaughterhouses generate highly polluting wastewater, which needs to be treated for discharge or reuse. As a novelty, this review article focused on assessing the characteristics and methods to treat wastewater from slaughterhouses in the state of Minas Gerais, and verifying its compliance with environmental regulatory agencies. The aim was to present data that helps to better manage this residue in other Brazilian states and countries. By analyzing the literature data, it was found that raw slaughterhouse wastewater (SWW) showed a high concentration of organic matter. For most SWW, the BOD5/COD ratio was above 0.4, which implies that it can be treated biologically. Generally, treated wastewater was in accordance with legal discharge standards, considering COD and BOD5 removals above 70% and 75%, respectively. It was found that wastewater treatment plants (WWTPs) consisted of some type of pretreatment (screens, grease traps) to remove coarse solids and fatty material, eventually followed by a flotation step and finally by biological processes, mostly anaerobic and/or aerated (or facultative) ponds. However, the absence of an aerobic process at the end of the treatment in some WWTPs, in addition to a system allowing better removal of biological flocs, might be the reason for ammoniacal nitrogen and suspended solids values being above the allowed maximum in treated wastewater, respectively. Besides the discharge into water bodies, it was verified that fertigation using treated SWW is very common in the state of Minas Gerais.

15.
Int J Biol Macromol ; 267(Pt 1): 131331, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574918

RESUMO

The dissolution of cellulose in double salt ionic liquids (DSILs) was studied in detail and compared with the dissolution in individual constituent ionic liquids (ILs). The DSILs, [C4mim](CH3CO2)xCl1-x (x is the mole fraction of the single component ILs), were synthesized using acetate and chloride salts of 1-butyl-3-methylimidazolium. These DSILs were then used for the investigation of the solubility of cellulose in the whole mole fraction range. Commercial cellulose (CC) powder, kraft pulp (KP), and prehydrolysis kraft pulp (PHKP) of jute were chosen as cellulose sources. The solubility of cellulose increased with an increasing temperature for [C4mim](CH3CO2)0.6Cl0.4 and with increasing amount of [C4mim]Cl in DSILs. The maximum solubility of CC powder was 32.8 wt% in [C4mim](CH3CO2)0.6Cl0.4 at 100 °C, while for KP and PHKP, solubilities were 30.1 and 30.5 wt%, respectively under the identical condition. Cellulose could be regenerated from the DSILs using water as an antisolvent. Structure, morphology, and thermal stability of the regenerated cellulosic materials were analyzed. DSILs could be recycled >99 % without a discernible change in structure. This work demonstrates that DSILs display enhanced solubility over ILs system and have potential as a chemical processing methodology.

16.
Water Res ; 256: 121536, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38631238

RESUMO

In drinking water applications, an ozone exposure (Ct) based framework has been historically used to validate ozone disinfection. However, significant viral inactivation can be achieved with little to no measurable ozone exposure. Additionally, ozone exposure depends on multiple water quality variables as well as the calculation/ozone measurement method used. In this study, we evaluated alternative ozone monitoring frameworks as well as the impact of water quality variables on ozone decay kinetics and virus/coliform inactivation. Here we show that both change in UV254 absorbance and applied O3:TOC were well correlated with viral inactivation and these frameworks were resilient to changes in water quality. Both increasing temperature (12-30 °C) and pH (5.5-8.4) was shown to significantly increase the ozone decay rate and decreased the resulting ozone exposure by as much as ∼90% in the case of pH. However, due to the increased reaction rate of ozone with viruses at elevated temperature and pH, there was only a minor impact (∼20% in the case of pH) in overall disinfection performance for a given O3:TOC. These frameworks were also considered for variable source water with TOC (5-11 mg/L) and TSS (1.2-5.8 mg/L). Change in UV254 absorbance or applied ozone dose (mg/L) were the strongest indicators of disinfection performance for source waters of variable TOC, however site-specific testing may be needed to apply this framework. Challenge testing with influent nitrite indicated that ozone disinfection performance is significantly impacted (>50% reduction in inactivation) in the presence of nitrite thus enforcing the importance of accounting for this value in the applied ozone dose. Multi-point ozone dissolution was investigated as an alternative ozone application method that may present a benefit with respect to overall disinfection performance especially if nitrite was present. Developing and validating these alternative monitoring frameworks and ozone application methods is imperative in water reuse applications where unnecessary elevated ozone exposure may lead to harmful byproduct formation.

17.
Learn Health Syst ; 8(2): e10392, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633020

RESUMO

Introduction: This paper provides insight into the development of the Dutch Dementia Care and Support Registry and the lessons that can be learned from it. The aim of this Registry was to contribute to quality improvement in dementia care and support. Methods: This paper describes how the Registry was set up in four stages, reflecting the four FAIR principles: the selection of data sources (Findability); obtaining access to the selected data sources (Accessibility); data linkage (Interoperability); and the reuse of data (Reusability). Results: The linkage of 16 different data sources, including national routine health and administrative data appeared to be technically and legally feasible. The linked data in the Registry offers rich information about (the use of) care for persons with dementia across various healthcare settings, including but not limited to primary care, secondary care, long-term care and medication use, that cannot be obtained from single data sources. Conclusions: A key lesson learned is that in order to reuse the data for quality improvement in practice, it is essential to involve healthcare professionals in setting up the Registry and to guide them in the interpretation of the data.

18.
Sci Total Environ ; 927: 172155, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575028

RESUMO

As of 2022, China's rural sewage treatment rate is only approximately 31 %. Rapid rural development has led to higher demand. However, China's rural areas are complex and face many problems, such as uneven economic development, population distribution, and water availability. Long-lasting and low-cost wastewater treatment measures are needed for application in rural areas. The quantity and quality of rural domestic wastewater in China were characterized first. Next, the hot topic of domestic wastewater in Chinese villages was confirmed via bibliometric analysis using CiteSpace, and the treatment technologies for rural domestic wastewater were compared. Specifically, the technical status and challenges of the most common technology in rural domestic wastewater treatment, constructed wetlands, were summarized.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , China , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , População Rural , Purificação da Água/métodos , População do Leste Asiático
19.
Environ Epidemiol ; 8(2): e300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617421

RESUMO

Background: Direct potable reuse (DPR) involves adding purified wastewater that has not passed through an environmental buffer into a water distribution system. DPR may help address water shortages and is approved or is under consideration as a source of drinking water for several water-stressed population centers in the United States, however, there are no studies of health outcomes in populations who receive DPR drinking water. Our objective was to determine whether the introduction of DPR for certain public water systems in Texas was associated with changes in birth defect prevalence. Methods: We obtained data on maternal characteristics for all live births and birth defects cases regardless of pregnancy outcome in Texas from 2003 to 2017 from the Texas Birth Defects Registry and birth and fetal death records. The ridge augmented synthetic control method was used to model changes in birth defect prevalence (per 10,000 live births) following the adoption of DPR by four Texas counties in mid-2013, with county-level data on maternal age, percent women without a high school diploma, percent who identified as Hispanic/Latina or non-Hispanic/Latina Black, and rural-urban continuum code as covariates. Results: There were nonstatistically significant increases in prevalence of all birth defects collectively (average treatment effect in the treated = 53.6) and congenital heart disease (average treatment effect in the treated = 287.3) since June 2013. The estimated prevalence of neural tube defects was unchanged. Conclusions: We estimated nonstatistically significant increases in birth defect prevalence following the implementation of DPR in four West Texas counties. Further research is warranted to inform water policy decisions.

20.
Int J Environ Health Res ; : 1-14, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587466

RESUMO

Used cooking oils (UCOs) represent the residual oil and fat used for deep-frying foods. This study determined the perception and practices of food vendors on the reuse and disposal of UCOs. The study aims to provide information on UCO management and its potential environmental impacts. The descriptive cross-sectional study utilized a mixed-method approach. A three-stage sampling technique was applied to select 291 commercial food vendors selling deep-fried foods. The data were collected using interviewer-administered questionnaire, and three focus group discussions. The results showed that 61.0% of the respondents positively perceived the environmental effects of reusing and disposing UCO, and 99.0% repeatedly use the same cooking oil for deep-frying till depletion. The respondents' perception on cooking oil reuse and disposal were influenced by wealth, ethnicity, education, and years of experience. Most respondents demonstrated a positive awareness on the environmental impact of UCO, though a significant gap remained between their knowledge and practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...